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Abstract
The dynamics of the Ziff-Gulari-Barshad (ZGB) model is studied on three
different two-dimensional (2D) lattices: square (sq) lattice, hexagonal-
honeycomb (hex-hon) lattice and purely hexagonal (hex) lattice. The effects
of the support geometry on the steady state and the dynamics are assessed. In
all 2D lattice geometries the ZGB model is shown to exhibit non-equilibrium
phase transitions of the first and second order, but the critical values of the
kinetic parameters depend crucially on the substrate geometry.

Clustering and island formation are observed in all ranges of parameters,
but the clusters are fractal only outside the active catalytic region. The fractal
dimensions depend on the kinetic parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the past decades it has been demonstrated that the mean field approximation is not
adequate to describe processes taking place on low-dimensional supports [1]. The problem
stems from the limitations in mixing, which produce spatial and temporal inhomogeneities in
low-dimensional systems. Diffusion, percolation, aggregation, chemical reactions are a few
examples where the presence of a low-dimensional support induces non-trivial deviations from
the mean field behaviour ([2-5] and references therein). In all these systems the mean field
behaviour is approached as the dimensionality of the support increases. This is related to the
fact that when the dimensionality increases, normally so does the number of nearest neighbours,
or coordination number. As the coordination number increases, the system has more freedom
in reacting, and mixing conditions are more easily attained, gradually approaching the mean
field limit. Thus apart from the support dimensionality the geometry involved may also play
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a crucial role in the evolution of a reactive process. This is most obvious in heterogeneous
catalytic systems, where the processes take place on metallic surfaces, such as Pt, Rh, Ir, Au
and composite ones. The metal atoms on catalytic surfaces attain various configurations, such
as square and hexagonal, and in many cases lattice phase transitions are known to take place,
sometimes periodically, between different surface configurations [6—16].

The current study concentrates on the effects of the geometry on the output of
heterogeneous catalytic processes, using as an example the CO oxidation on the surface of Pt.
The surface of Pt(100), when catalysing CO oxidation, switches between a stable hexagonal
configuration and a metastable square configuration. The metastable configuration is stabilized
by the presence of CO and reconstruction between the two phases takes place depending on
the partial surface coverages [10]. The dynamics on the two surfaces are different, since the
geometry and the number of neighbours determines the electronic distribution between the
surface atoms and thus their chemical activity. On the square lattice configuration O, adsorbs
readily, dissociating into two atoms, while on the hexagonal lattice the sticking coefficient
of oxygen is negligible. This interplay between geometry and reactivity is known to induce
spatiotemporal oscillations and pattern formation in the CO oxidation system and in other
heterogeneous catalytic reactions [6, 10, 14].

To address the effects of the support geometry on the dynamics of the CO oxidation system,
kinetic Monte Carlo (KMC) simulations on Pt substrates with different configurations have
been performed. In all cases the range of the kinetic parameters where the catalyst remains
active have been studied and compared. Clustering has been explored under the different
support geometries. It will be demonstrated that outside the active zone the clusters have fractal
geometry, whose dimensionality relates to both kinetic parameters and support geometry.

In the next section we study the CO oxidation in three different lattice geometries, we
compare the results and deduce the size of the active parametric region in relation to the
coordination number of the lattice. In section 3 we study the clustering effects and we observe a
scaling behaviour in the cluster size as a function of the kinetic parameters in the square lattice
configuration. We compute the fractal dimension related to this clustering as a function of the
kinetic parameters. In the concluding section we recapitulate our main results and we discuss
open problems.

2. Modelling CO oxidation

One of the most extensively studied surface reactions is CO oxidation on the surface of Pt [10].
This reaction is of great technological importance in industry as CO is one of the most abundant
and widely distributed air pollutants. From the experimental point of view it has been studied
extensively because, as an out-of-equilibrium process, it presents interesting spatiotemporal
evolution, producing rate oscillations, clustering and patterns.

The mechanism attributed to this reaction is known as the Langmuir—Hinshelwood (LH)
scheme, described as follows:

CO, + 25 CO (la)
OZ,gas + 2% lj] 2()ubs (lb)
COuts + Ougs 3 2 % + CO, . (1c)

In this heterogeneous reaction, all species are adsorbed on the surface of Pt, which may
take several configurations: square, hexagonal and more complex ones forming steps and
terraces and entering the perpendicular (third) dimension. In equation (1) the index ads means
species adsorbed on lattice, g means species in the gaseous phase above the lattice and * denotes
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the empty lattice sites. The parameters k; and k, represent the reaction rates. Since for the
lattice dynamics only the on-lattice concentrations are relevant, the lattice coverages of CO, O
and vacant adsorption sites are denoted by A, B and S, respectively.

A very successful simulation model which describes the LH process was introduced
by Ziff, Gulari and Barshad (ZGB) in 1986 [18, 19]. This minimal model predicts kinetic
phase transitions [18, 20-22] of two kinds: a smooth second-order phase transition followed
by an abrupt one of first order. The transition points in the parametric space designate
borderlines between poisoning and active steady states, which are often observed in catalysis
experiments [6, 10, 23]. Kinetic Monte Carlo (KMC) models in the spirit of ZGB have also
been proposed for NO reduction on the surface of Pt [24, 25]. The major success of these
models is that it became possible to isolate and to identify the different mechanisms responsible
for the spatial structures and temporal phenomena observed experimentally. Another important
feature of the ZGB model is that its behaviour is robust under various modifications of the
mechanism. The general features, including the two transitions, remain unchanged, with only
slight shifts of the values of the critical points.

The model used in this study is a modified version of the original ZGB model which
gives more freedom to the CO, complex to remain on the lattice for finite times and allows for
slower CO, desorption. This mechanism has been proposed earlier in [26] and is summarized
as follows.

0. Initially the lattice of size L x L is empty.
1. Atevery Elementary Time Step (ETS) one random lattice site (i, j) is chosen.
2. If the chosen lattice site (i, j) is empty then

2a. with probability k; a CO particle adsorbs;

2b. with probability 1 — k; one of the nearest neighbours (i,, j.) is selected at random
and if the selected neighbour is also empty, O, adsorbs dissociatively on (i, j) and
(irs o)

2c. if neither of the above takes place the algorithm returns to step 1 for a new elementary
step to start.

3. If the chosen lattice site (7, j) contains a CO particle and a randomly selected neighbour
(ir, jr) contains an O particle then with probability k, they form a complex CO, and
desorb, leaving two vacant sites.

4. If the chosen lattice site (i, j) contains an O particle and a randomly selected neighbour
(ir, jr) contains a CO particle then with probability k, they form a CO, complex and
desorb, leaving two vacant sites.

5. An ETS is completed and the algorithm returns to step 1.

One Monte Carlo Step (MCS) consists of L> ETSs and corresponds to the time where all lattice
sites have been selected once on average.

The difference between the current algorithm and the original ZGB one is that, in the
latter, once a particle (CO or O) has been deposited on the lattice it immediately reacts with its
neighbours and if the neighbours are of the right kind (O or CO, respectively) they immediately
form the CO, complex and desorb from the lattice. In the currently proposed version, the
particles remain adsorbed on the lattice longer, until they are selected by the algorithm to react
with their neighbours.

Despite the modification described above, the current ZGB variant remains closely related
to the original ZGB model, as was anticipated due to the robust character of the model. As was
also demonstrated in earlier studies [26] the current ZGB version on the square lattice produces
critical points of the same kind but slightly shifted with respect to those of the original ZGB.
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For this reason in the following we will refer to this modified version simply as the ZGB model,
without making any distinction between the original and the modified model, unless otherwise
stated. The value of k; is set to k; = 1.0 in all following computations. In all cases explored
below, the kinetic parameters do not change with the lattice, only the number of bonds change
from one lattice type to another.

2.1. Results on the square lattice

In the case where the catalytic surface is represented as a square (sq) lattice, each lattice site
(i, j) has four nearest neighbours, namely (i, j +1), (i, j —1), @+ 1, j)and (i — 1, j). When
exploring the behaviour of the system for parametric values 0 < k; < 1 and k, = 1, three
distinct parametric regions have been identified: (a) for values 0 < k; < 0.3481 the system is
poisoned by O, (b) for values 0.3481 < k; < 0.3930 the system is active and all constituents
are found on the lattice, and (c) for values 0.3930 < k; < 1.0 the system is poisoned by CO.
The first critical point, k; = 0.3481, is described as a smooth kinetic transition and is of second
order, while the second critical point, k; = 0.3930, is described as an abrupt transition and is
of first order. For comparison, the critical points in the original ZGB model are k; = 0.389 for
the smooth transition and k; = 0.525 for the abrupt transition.

2.2. Results on the hexagonal lattice

If the catalytic surface is in a pure hexagonal (hex) configuration each site (7, j) is in contact
with six nearest neighbours, e.g., (i, j+ 1), (, j— 1), (i +1,/),Gi —1,j),G+1,j+1)and
(i—1, j—1). Again, three parametric regions are observed as before. The smooth kinetic phase
transition point is found at k; = 0.3086, while the second abrupt transition point is located at
ki = 0.3912. The active region is more extended in the case of the hexagonal lattice due to
the increased number of nearest neighbours, which allows for more efficient mixing than in the
case of the square lattice.

2.3. Results on the hexagonal-honeycomb lattice

If the catalytic surface is in the hexagonal-honeycomb (hex-hon) configuration, every site (i, j)
has three nearest neighbours, e.g., (i, j + 1), (i, j — 1) and either (i — 1, j) (if j is odd) or
(i + 1, j) (f j is even). Also, in this case three parametric regions are observed. The smooth
kinetic phase transition point is found for k; = 0.3734, while the second abrupt transition
point is located at k; = 0.3821. The active region is now less extended than in the case of the
square and hexagonal lattices due to the limited number of nearest neighbours, which causes
less efficient mixing than in the previous two cases.
For comparison, all three cases are presented together in figure 1.

3. Clustering in the ZGB model

From the structure of the LH scheme two reactive steps, the dissociative adsorption of O, (1b)
and the desorption of the complex CO, (lc), are cooperative phenomena which can lead to
spontaneous clustering in the system. In particular, O, adsorption leads to the formation of a
two-cluster of O, while CO, desorption leads to the formation of two-clusters of empty sites.
The CO adsorption is a spontaneous, non-cooperative effect which reduces clustering. Thus,
in the system, we have competitive factors: production as well as destruction of clusters. In
figure 2, representative lattice configurations are depicted for k; = 0.347 in the parametric
zone where the catalyst is poisoned by O. The lattice size is L x L = 400 x 400 sites. At
the initial stages of evolution the system is randomly populated by the three species, while as

4



J. Phys.: Condens. Matter 19 (2007) 065128 A Provata and V K Noussiou

7T T T T T T T T T T T

1 < -
B *
=—a square i
% - % hexagonal |
o 0.8 1 —
S ¢---¢ honeycomb !
g i
S 1
= 1
S 0.6} : i
S |
14
3 ;
S 041 h -
@ 1
< |
3 1
= * _
|

S A A SN NS
031 032 033 034 035 036 037 038 039 04

Figure 1. The CO steady state concentrations as a function of the kinetic parameter k; for three
different lattice types: (a) square (solid line), (b) hexagonal (dashed line) and (c) hexagonal-
honeycomb (dotted line).

time increases and while the system tends to the poisoning state, clustering phenomena of the
CO particles and vacant sites are observed (figure 2, t = 4, 500, 5000 MCS). The formation of
clusters is obvious and their variety of sizes and forms induces the idea of a fractal clustered
structure.

To explore the possibility of scaling behaviour in the cluster structure the standard box
counting method is used. One of the three constituents (CO in this case) is assumed to be
the covering (or distributed) species, while the other two (O and empty sites in this case) are
assumed to be the support. The entire lattice is covered by boxes of size s. Denote by N (s) the
number of boxes of size s needed to cover all the distributed (CO) species on the lattice. If the
number of boxes N (s) scales as

N(s) ~ s (2)

then d is the fractal dimension of the distributed species. In the case where df = 2 on a 2D
support then the distributed species does not have a fractal structure but it covers the support
randomly and homogeneously. If d; = 0 there is complete absence or spurious presence of the
distributed species. In all other cases, the distributed species covers the support fractally. In
figure 3, the values of N(s) of CO as a function of s is depicted for different times (MCS) in a
double logarithmic scale. It is observed that the slope of the line starts curving for early times
and later acquires a linear part for about two orders of magnitude, dictating a unique spatial
scaling. This scaling behaviour persists for intermediate temporal scales and the values of the
fractal dimensions reported have been calculated for consistency when the system has reached
75% of its lifetime before poisoning is attained. Only near the steady state, where the system
is populated by O, do the number of CO particles and the fractal dimensions vanish.

In figure 4, representative lattice configurations are depicted for k; = 0.37 in the
parametric zone where the catalyst is active. Simple inspection of the particle distributions
shows that all particles are more or less homogeneously distributed on the lattice.

Similarly to figure 3, in figure 5 the values of N(s) as a function of s are depicted for
different times (MCS) and for the parametric value k; = 0.37 where the catalyst is active. It is
observed that the slope of the line remains constant, equal to 2, indicating a uniform non-fractal
coverage of the support.
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t = 500 MCs t = 5000 MCs
Figure 2. Representative square lattice configurations at three different time steps, for parameter

values k1 = 0.347, ko = 1.0, located outside the active zone. Black points correspond to Co, grey
(red) correspond to O and white points correspond to vacant sites.
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Figure 3. The scaling of N (s) for the CO species at different time steps on a square lattice support.
The kinetic parameters are k; = 0.347 and k, = 1.0.

Similarly to figures 2 and 4, in figure 6 representative lattice configurations are depicted for
ki = 0.394 within the parametric zone where the catalyst is poisoned by O. Simple inspection
shows clear non-trivial scaling behaviour and fractality for intermediate timescales, before the
CO poisoning state is attained.

In figure 7, similarly to figures 3 and 5, the value of N(s) as a function of s is depicted for
different times (MCS) and for k; = 0.394. It is observed that even from early time steps linear
slopes are formed for almost two spatial scales. The fractal dimension of the oxygen clusters is
calculated when the system has reached 75% of its lifetime before poisoning.

As a concluding remark in this section, it is noted that when the oxidation of CO takes place
on low-dimensional supports, numerical simulations indicate that clusters are formed whose
spatial distribution presents non-trivial, fractal scaling. In particular, the ZGB realization of the
CO oxidation demonstrates that non-trivial clustering is observed for intermediate times and
for kinetic parameters away from the active zone, while within the active zone the three species
are distributed randomly, but homogeneously, on the lattice. Qualitatively similar results are

6



J. Phys.: Condens. Matter 19 (2007) 065128 A Provata and V K Noussiou

t=2 MCsS t= 5000 MCS t= 30000 MCS

Figure 4. Representative square lattice configurations in different time steps, for k; = 0.37,
ko = 1.0, parametric region where the catalyst is active. The lattice size is L x L = 400 x 400
sites. Colours as in figure 2.
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Figure 5. The scaling of N(s) for CO and O clusters, at different time steps on a square lattice
support. The lattice size is L = 400 and the kinetic parameters are k| = 0.37 and k, = 1.0, within
the parametric range where the catalyst is active.

also observed for the hexagonal and hexagonal-honeycomb lattices, but the value of the fractal
dimensions depends on the lattice type.

In figure 8, cumulative results of the cluster fractal dimensions on the square lattice are
depicted as a function of the kinetic parameter k. The kinetic phase transitions which were first
observed in terms of the particle concentrations are also mirrored here in terms of the fractal
dimensions of the corresponding covering species.

4. Conclusions

In the current study the influence of the substrate geometry (as opposed to dimensionality) on
reactive dynamics is explored, using the Ziff-Gulari-Barshad model of CO oxidation on the
surface of Pt. For the modelling three types of lattices are employed, having different geometry
(coordination number): square lattice (four nearest neighbours), hexagonal lattice (six nearest
neighbours) and hexagonal-honeycomb lattice (three nearest neighbours).

The main geometry effect is the shifting of both critical transition points and the
modification on the size of the parametric zone where the catalyst is active. From the numerical
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4 MCS t = 5000 MCsS

10000 MCS t = 15000 MCS

Figure 6. Representative square lattice configurations at different time steps, for parameter values
k1 = 0.394, k, = 1.0, outside the active zone. Colours as in figure 2.
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Figure 7. The scaling of N (s) for the species O at different time steps on a square lattice support.
The kinetic parameters are k| = 0.394 and k, = 1.0, within the parametric range where the catalyst
is finally poisoned by CO.

simulations it is deduced that the higher the coordination number of the lattice, the larger the
parametric zone where the catalyst remains active. This is attributed to the larger number of
possibilities for reaction and thus higher possibility for the catalyst to remain active.

From the observation of the lattice configuration during the evolution of the reactive
system, it becomes apparent that clustering of different species may be observed. In particular,
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Figure 8. The values of dr as a function of the kinetic parameter k; (ko = 1.0) for the square lattice

configuration.

the clusters are distributed in a random fractal manner on the lattice, when the parameter k; is
in the range where the catalyst attains a poisoning state. Alternatively, the clusters cover the
2D lattice in a random but uniform way, when the parameter k; is within the range where the
catalyst remains active. The numerical investigations were conducted on the square lattice
configuration, but preliminary results on the hexagonal and hexagonal-honeycomb lattices
indicate that this effect holds qualitatively, independently of the lattice type.

In real physical surface processes, the formation of clusters of homologous particles with
fractal local properties is one way through which the system attains a poisoning state. If a
system maintains a uniform distribution then all components have equal opportunity to react
and the system (catalyst in this case) remains in an active state. Alternatively, when segregation
and clustering of the species dominate on the surface the reactivity is limited only between the
species at cluster interfaces. As the number of cluster interfaces and/or their sizes decrease,
larger and larger clusters are created, leading to poisoning. Note that fractal clusters have
extended interfaces and designate an intermediate state between a completely random system,
where the size of cluster interfaces attains a maximum, and a poisoned system, where the size
of cluster interfaces is zero. If, on the other hand, a mixing process is added (e.g., diffusion of
some species) making the local particle distributions uniform, local fractality is destroyed and
higher reactivity may be attained.

The ZGB model is a minimal model describing the complex CO oxidation process, which
is known to develop very special characteristics, such as spatiotemporal oscillations, chaos, and
various dynamical patterns depending on the reaction conditions. This minimal model does
not account for such features because it does not take into account processes such as surface
diffusion of the species (mainly CO), surface reconstruction, possibility of desorption of the
reactants, and terrace and edge effects. (It is known, for example, that if different sticking
coefficients of some of the reactants are considered, the range of active catalytic states may
increase [27].) It would be interesting to add at least some of the above processes and explore
the persistence of fractality and clustering under these modifications.

As a final conclusion, we would like to add that this work indicates further that clustering
and fractality emerge spontaneously in nonlinear dynamical systems, when they are constrained
on low-dimensional surfaces. It remains an open problem, to be confirmed in other cases of
reactive dynamical systems, if the fractal behaviour is always consistent with the poisoning of
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the catalyst, whereas homogeneously distributed systems are consistent with the active states
of the catalyst.
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